Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations

نویسندگان

  • Ju Liu
  • Héctor Gómez
  • John A. Evans
  • Thomas J. R. Hughes
  • Chad M. Landis
چکیده

We propose a new methodology for the numerical solution of the isothermal Navier-StokesKorteweg equations. Our methodology is based on a semi-discrete Galerkin method invoking functional entropy variables, a generalization of classical entropy variables, and a new time integration scheme. We show that the resulting fully discrete scheme is unconditionally stable-in-energy, second-order time-accurate, and mass-conservative. We utilize isogeometric analysis for spatial discretization and verify the aforementioned properties by adopting the method of manufactured solutions and comparing coarse mesh solutions with overkill solutions. Various problems are simulated to show the capability of the method. Our methodology provides a means of constructing unconditionally stable numerical schemes for nonlinear non-convex hyperbolic systems of conservation laws.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamically consistent higher order phase field Navier-Stokes models with applications to biological membranes

In this paper we derive thermodynamically consistent higher order phase field models for the dynamics of vesicle membranes in incompressible viscous fluids. We start with basic conservation laws and an appropriate version of the second law of thermodynamics and obtain generalizations of models introduced by Du, Li and Liu [5] and Jamet and Misbah [13]. In particular we derive a stress tensor in...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

Liquid-vapor transformations with surfactants. Phase-field model and Isogeometric Analysis

Surfactants are compounds that find energetically favorable to be located at the boundaries between fluids. They are able to modify the properties of those interfaces, for example, reducing surface tension. Here, we propose a new model for liquid-vapor flows with surfactants which captures the dynamics of the surfactant and accounts for phase transformations in the fluid. The aforementioned mod...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

Meshless Local Petrov-Galerkin Method– Steady, Non-Isothermal Fluid Flow Applications

 Abstract : The meshless local Petrov-Galerkin method with unity as the weighting function has been applied to the solution of the Navier-Stokes and energy equations. The Navier-Stokes equations in terms of the stream function and vorticity formulation together with the energy equation are solved for a driven cavity flow for moderate Reynolds numbers using different point distributions. The L2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2013